Reg. No.		 _						
	Reg. No.	,					<i>-</i> .	

Question Paper Code: 51452

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fifth Semester

Electronics and Communication Engineering

EC 2301/EC 51 - DIGITAL COMMUNICATION

(Regulations 2008)

(Common to PTEC 2301 – Digital Communication for B.E. (Part-Time) Fourth Semester – Electronics and Communication Engineering – Regulations 2009)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions. $PART - A (10 \times 2 = 20 \text{ Marks})$

- 1. State any four techniques to improve the BER of a communication system.
- 2. Define basis set.
- 3. An analog waveform with maximum frequency content of 3 kHz is to be transmitted over an M-ary PCM system, where M = 16. What is the minimum number of bits/sample that should be used in digitizing the analog waveform? (The quantisation error is specified not to exceed \pm 1% of the peak-to-peak analog signal)
- 4. Differentiate the principles of temporal waveform coding and model-based coding.
- 5. Define Hamming distance and Hamming weight.
- 6. Define constraint length of a convolutional coder.
- 7. Mention two properties of matched filter.

9. "	Wha	it are	the drawbacks of binary PSK system?	
10.	Wha	ıt is m	neant by coherent and non-coherent detection?	
	-			; ;
,			$PART - B (5 \times 16 = 80 \text{ marks})$	
Proceed .	(a)	(i)	Explain Gram-Schmidt orthogonalisation procedure.	(12)
		(ii)	State and explain the dimensionality theorem.	(4)
•			· OR	
	(b)	(i)	Explain the mathematical models of any three communication channe	ls.
··	\$	(ii)	Define the terms: (1) Half-power bandwidth	A 100 100 100 100 100 100 100 100 100 10
ŧ	SP.	A .	(2) Noise-equivalent bandwidth	· · · · · · · · · · · · · · · · · ·
			(3) Absolute bandwidth	
•			(4) Bounded power spectral density.	
12.	(a)	Exp	plain a DPCM system. Derive the expression for slope overload noise of	f the
		syst	tem. Show that SNR of DPCM is better than that of PCM.	
	, 1 .		OR	
	(b)-	(i)	Explain subband coding.	(8)
		(ii)	Compare the performance of various speech encoding methods.	(8)
		-		
13.	(a)	Des	scribe the steps involved in the generation of linear block codes. Define	and
,		exp	lain the properties of syndrome.	(16)
			OR	
~	¥ %		2	, 51452

What is the use of eye pattern?

	(b)	(i). (Explain how convolutional codes can be generated. Illustrate wit example.	th an (8)
		(ii)	obtain the order of constraint length 3 and rate 1/2, obtain	
	,		encoded output for the input message 10011.	(8)
14.	(a)	Der	ive the bit error probability of a matched filter.	
			OR	
	(b)	Exp	lain the Nyquist first criterion for IS1 elimination.	
	•			
15.	(a)	(i)	Derive the power spectral density of binary ASK signal.	(6)
		(ii)	Draw the block diagram of QPSK transmitter and receiver. Explain	the
٠.			function of various block.	(10)
			OR	
•	(b)	(i)	Draw the functional block diagram of modulator for QAM and expl	lain 🔍
٠		,	its operation.	(8)
		· (ii) *	Derive the expression for error-probability of QAM system.	(8)